(16.1-2 Line Integrals

- Introduction
- A line Integral is an integral defined on a curveso.
There are 4 equivalent' ways to define a line integral, and they all mean the same thing:
Theorem: The following four are equivalent -

$$
\left.\int_{e} \vec{F} \cdot \vec{T} d s=\int_{a}^{b} \vec{F} \cdot \vec{v} d t=\int_{e} \vec{F} \cdot d \stackrel{s}{r}=\int_{e} M d x+N d y+P D\right) z
$$

We make sense of each of these four expressions for Line Integral

- The first expression gives the meaning of a line integral -
$\int \vec{F} \cdot \vec{T} d s \quad$ In physics this is called "The work done by the force \vec{F} along the curve $C^{"}$
Mathematically it is the "Tola amour of \vec{F} pointing tangent to the curve C "
- To define $\int \vec{F} \cdot \vec{F} d s$, recall how we describe a curve l with orientation

$$
\begin{aligned}
& P: \vec{r} \\
&=\vec{r}(t) \\
& a \leq t \leq b
\end{aligned}
$$

To describe a curve you must give a parametrization

$$
\vec{r}(t)=x(t) \sum_{2}+y(t) j+z(t) d
$$

(oriented (correctly)

A curve C is given by a parametrization (3)

$$
\vec{r}(t)=(x(t), y(t), \partial(t)), a \leq t \leq b\left\{\begin{array}{l}
\text { Notation } \\
x=[x, y, z) \\
0
\end{array}\right.
$$

There are many ways to parameterize the same curve e Ie, given $\vec{r}(t), a \leq t \leq b$, if $t=\varphi(u)$,

then $\vec{r}(\varphi(u))=(\vec{r} \circ \varphi)(u) \quad u_{a} \leqslant u \leqslant u_{b}$ is another parametrization $\quad b=\varphi\left(u_{b}\right)$ $a=\varphi\left(\mu_{a}\right)$ As long as $\varphi^{\prime}(u)>0$, one parametrization is as good as another.

- Mathematicians think of different parameterizations of a curve as different coordinate systems on the same curve e
Ie, they give you a way to "name" the points on l by number $t: p=\hat{r}(t)$ nainton curve π ne
- There is one special paramelerization (4) determined by the curve: Namely, arclength parameterizafion

$$
S=\int_{a}^{t}\|\vec{v}(\xi)\| d \xi=\varphi(t)
$$

Problem: You typically need to start with a parameterization $\vec{r}(t)$ to recover $\phi(t)$ and there by obtain the ardength parameterization

$$
\vec{r}(s) \equiv \vec{r}\left(\varphi^{-1}(s)\right) \quad 0 \leq s \leqslant \phi^{-1}(b)
$$

- Important Point? The line integral is independent of parameterization in the sense that it can be computed in different coordinate systems (parameterizalious) but you always get the same answer? (4) Find Introduction to line In tegrees

We begin by defining the lime integral in terms of the arcleng th parana terization -
Gwen - A vector field \vec{F} \& Curve e

$$
\begin{aligned}
\vec{F}(x, y, z) & =M(x, y, t) \underset{\sim}{i}+N(x, y, z) \underset{\sim}{j}+P(x, y, z) \underset{\sim}{h} \\
& =(M, N, P)
\end{aligned}
$$

(Think of \vec{F} as a force field)
Mathematically: $\vec{F}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$
" \vec{F} assigns a vector $(\overrightarrow{M, N, P})$ to each point $(x, y, z) \in \mathbb{R}^{3}$. To be consistent, we treat

$$
\begin{aligned}
& \mathbb{R} \longrightarrow \mathbb{\pi} \\
& (x, y, \bar{R}) \longmapsto(M, N, P)
\end{aligned}
$$

inputs 8 outputs as vectors...

Base point \vec{r} is the input so treat (x, y, z) as a vector $\overline{(x, y, z)}$

Steps to defining the Line Integral $\int_{e} \vec{F} \cdot \vec{T} d s(6)$
(1) Use the arclength parameterization

- $\vec{F} \equiv \vec{F}(\vec{r}(s))$ is the "force" $a \dagger \vec{r}(s)$
- $\vec{T}=\vec{T}(\vec{r}(s))$ is the unit
 tangent at $\vec{r}(s)$
- $\vec{F} \cdot \vec{T} \equiv \vec{F}(\vec{r}(s)) \cdot \vec{T}(\vec{r}(s))$ is the length of the component of \vec{F} in direction $\underset{T}{T}$
(z) Discretize to define a Riemann Sum

$$
\begin{array}{lr}
S_{0}=S_{a}<S_{1}<S_{2}<\cdots<S_{N}=S_{b}, & \Delta S=\frac{S_{b}-S_{a}}{N} \\
S_{k}=S_{a}+k \Delta S, \underset{\sim}{x}=\vec{\Gamma}\left(S_{k 2}\right) & \vec{F}_{n} \vec{F}(\underset{\sim}{x} k)
\end{array}
$$

(3) Define Integral as the limit of Riemann Sum -

$$
\begin{aligned}
& \int_{\vec{F}} \cdot \vec{T} d s=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \vec{F}_{b_{2}} \vec{T}_{n} \Delta s
\end{aligned}
$$

Defn: $\int_{e} \int_{\vec{F}} \cdot \vec{T} d s=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \vec{F}_{B_{2}} \cdot \vec{T}_{n} \Delta s$

- This gives the simplest most direct meaning of the line

Integral as "The total amount of \vec{F} pointing tangent to $C^{\prime \prime}$ - In Physics this is the "sum of the component' of force in direction ot displacement times displacement, summed along e in a limiting sense Ie., the "Total Work Done by \vec{F} along EC"

- Note: Since arcength parameter is unique, $\int_{e} \vec{F} \cdot d s$ depends only on force \vec{F} Q Curve C

Conclude: In Physics, Work is Force x Displacement. When the force is changing along a variable curve, we break the work up into approxisuate constant force $\vec{F}_{B} \cdot \vec{T}_{n}$ times displacement Δs \& sum \Rightarrow Work Done is a Like Lutegral

- Problem: How do you compute the line integral?
Answers Use a parameterization?

Gives the meaning of live integral

Tells how to compute as the work done the lime integral - a Math 21 B integral
Important -Each parametrization gives you a different Math $21 B$ integral, but the answer is the same number namely "The work done by \vec{F} along C^{4}

- How it works: Assume an oriented curve (10) P is given by parametrization 00

$$
\stackrel{\rightharpoonup}{r}(t)=x(t) \underset{\sim}{i}+y(t) \underset{\sim}{j}+z(t) \underset{\sim}{k} \quad a \leqslant t \leqslant b
$$

(1) Discretize $[a, b]$

$$
\text { (1) Discretize }[a, b] \quad . \quad t_{N}=b, \Delta t=\frac{b-a}{N}
$$

(2) Convert to arclength $d s=\|\vec{v}(t)\| d t$

$$
\text { So } \quad \Delta S_{k} \approx\left\|\vec{V}\left(t_{n}\right)\right\| \Delta t
$$

(3) Construct Riemann Sum for live Integral

$$
\int_{C} \vec{F} \cdot \vec{T} d s=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \vec{F}_{k} \cdot \vec{T}_{b} \Delta S_{k}
$$

(4) Write as a Riemann Sum in t :

$$
\begin{aligned}
& \vec{F}_{n}=\vec{F}\left(\vec{r}\left(t_{n}\right)\right), \vec{T}_{m}=\frac{\vec{V}\left(t_{n}\right)}{\|\left(\vec{v}\left(t_{n}\right) \|\right)}, \Delta S=\left\|\vec{V}\left(t_{n}\right)\right\| \Delta t \\
& \text { Riemann Sum }\} \\
& \left.\sum_{k=1}^{N} \vec{F}_{m} \cdot \vec{T}_{m} \Delta S_{k}=\sum_{k=1}^{N} \vec{F}\left(\vec{r}\left(t_{n}\right)\right) \cdot \frac{\vec{v}\left(t_{n}\right)}{\|\vec{v}(t n)\|} \cdot\|V(t)\|\right) \| \Delta t
\end{aligned}
$$

(5) $\int_{e} \vec{F} \cdot s^{s} d s=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \vec{F}\left(\vec{r}\left(t_{k}\right)\right) \cdot v\left(t_{k}\right) \Delta t=\int_{a}^{b} \vec{F} \cdot \vec{V} d t$
(Same answer for any parametrization $\left.\quad{ }_{0}\right)^{a}$ Integral ${ }_{D}$

Conclude:

$$
\int_{e} \vec{F} \cdot \vec{T} d s=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{V}(t) d t
$$

- Holds for any parameterizatiou which respects the orientation of C (Ie., $\vec{r}(t)$ moves forward on l as t increases)
- $\int \vec{F} \cdot \stackrel{s}{1} d s$ gives the meaning
- $\int_{a}^{b} \vec{F} \cdot \vec{V} d t$ tells how to

- Since $\int_{e} \vec{F} \cdot \vec{T} d s$ is defined in terms of arclength, it has a single valve independent of parameterization Conclude: Every parameterization gives the same answer?

四 Example (1)
Use Liebniz theory of differentials to "prove" that

$$
\int_{e} \vec{F} \cdot \vec{T} d s=\int_{e} \vec{F} \cdot \vec{V} d t=\int_{e} \vec{F} \cdot d \vec{r}=\int_{e} M d x+N d y+P d z
$$

Soln $\quad \frac{d s}{d t}=\|\vec{v}\|$ so $d s=\|\vec{v}\| d t$

$$
\begin{gathered}
\vec{v}=\frac{d s}{d t} \vec{T} \text { so } \vec{T} d s=\vec{v} d t \\
\vec{v}=\frac{d \vec{r}}{d t} \text { so } d \vec{r}=\vec{v} d t \\
\frac{d \vec{r}}{d t}=\left(\frac{d x}{d t}, \frac{d y}{d t} \frac{d z}{d t}\right) \text { so } d \vec{r}=(d x, d y, d z)
\end{gathered}
$$

Thus:

$$
\begin{aligned}
& \vec{T} d s=\vec{v} d t e \underset{d \vec{r}}{ } \underset{(\overrightarrow{(M, N}, \vec{p})}{e} \cdot(\overrightarrow{d x}, d y, \lambda \vec{z}) \\
& =\int_{e} M d x+N d y+P d z
\end{aligned}
$$

Conclude: The four ways of writing the line integral are all equivalent:

$$
\int_{e} \vec{F} \cdot \vec{T} d s=\int_{e} \vec{F} \cdot \vec{V} d t=\int_{e} \vec{F} \cdot d r=\int_{e} M d x+N d y+P d z
$$

When computing, all roads lead to the same answer ?

Example (2) Let e be the parabola (14)

$$
y=x^{2}, 0 \leq x \leq 1 \text {. Let } \vec{F}=y^{2} \underset{i}{i}+x \underset{\sim}{\dot{j}}
$$

Evaluate $\int_{e} \vec{F} \cdot \vec{T} d S$
Solution: (1) first sep is to find a parametrization of C
Set $t=x$. Then $\vec{r}(t)=(\overrightarrow{x(t)}, y(t))=\left(t, t^{2}\right)$
So $\vec{F}(\vec{r}(t))=\left(t^{4}, t\right), \vec{v}(t)=(\overrightarrow{1,2 t)}$
(2) Use Liebniz differential identities to convert line integral to a Math 21B integral

$$
\begin{aligned}
& \int_{e}^{\vec{F} \cdot \underbrace{\vec{F}}_{\vec{v}} d t}=\int_{a=0}^{b=\vec{F}} \cdot \vec{v} d t=\int_{0}^{1}\left(\overrightarrow{\left.\left.y(t)^{2}\right), x(t)\right)} \cdot(\overrightarrow{(1, r t)} d t\right. \\
& =\int_{0}^{1}\left(\overrightarrow{\left.t^{4}, t\right)} \cdot \overrightarrow{(1,2 t)} d t=\int_{0}^{1} t^{4}+2 t^{2} d t\right. \\
& \left.=\frac{t^{5}}{5}+\frac{2 t^{3}}{3}\right]_{0}^{1}=\frac{1}{5}+\frac{2}{3}=\frac{13}{15}
\end{aligned}
$$

Note: we could just as well use

$$
\int_{e} \vec{F} \cdot \vec{T} d \delta=\int_{e} \vec{F} \cdot d \vec{r} \text { or } \int_{e} \vec{F} \cdot \vec{T} d s=\int_{e} M d x+N d y+P d z
$$

to compute - they lead to same t-integral
Example: we had $\vec{F}=\left(\overrightarrow{\left.y^{2}, x\right)}, \vec{r}(t)=\left(\overrightarrow{t, t^{2}}\right)\right.$
So

$$
\begin{aligned}
\int_{e} \vec{F} \cdot d \vec{r} & =\int_{e}(\overrightarrow{M, N}) \cdot(\overrightarrow{d x, d y}) \\
d \vec{r} & =(\overrightarrow{d x}, \vec{y}, d z) \quad \vec{F}=(\overrightarrow{M, N})=\left(y^{2}, x\right) \\
& =\int_{e} M d x+N d y=\int_{e} y^{2} d x+x d y
\end{aligned}
$$

But $x=t$ so $d x=d t, y=t^{2}$ so $d y=2 t d t$

$$
\begin{aligned}
\Rightarrow \quad & =\int_{e} t^{4} d t+t \cdot 2 t d t \\
& =\int_{0}^{1} t^{4}+2 t^{2} d t=0 \cdot=\frac{13}{15}
\end{aligned}
$$

Example (3) A simple closed curve is a curve $\vec{r}(t), a \leq t \leq b$ which is closed ($\vec{r}(a)=\vec{r}(b))$ and simple means it does not cross itself
Eg Circle $\vec{r}(t)=(\overline{(\cos t, \sin t)}, 0 \leq t \leq \pi$ is a simple closed curve (SCC)
Defy the line integral of \vec{F} around a closed curve C is called the circulation in \vec{E} around $?$ I.e, $\int_{e} \vec{F} \cdot \vec{T} d s$ measures the total amount of \vec{F} pointing counterclockwise" $\underset{\sim}{\rightarrow} \underset{\vec{F}}{ }$

Example (3) (cont) Let C be the circle of radius 2 , center (D, D) oriented counter-clockwis e. Let $\vec{F}=(x-y) z+x j$. Find the circulation in \vec{F} around e.
Solution: (1) Get a parametrization:
So $\vec{r}(t)=2(\cos t, \sin t), 0 \leqslant t \leqslant 2 \pi$
(2) Circulation $=\int_{e} \vec{F} \cdot \vec{T} d s$
(3) Use Leibniz differentials to set up Math 1 ip

$$
\begin{aligned}
& \int_{e} \vec{F} \cdot \vec{T} d s=\int_{0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot \vec{v}(\vec{r}(t)) d t \\
& \vec{F}(\vec{r}(t))=\overline{(x(t)-y(t), x(t))})=z(\cos t-\sin t, \cos t) \\
& \vec{v}(t)=\vec{r}^{\prime}(t)=2(-\overline{\sin t, \cos t)} \\
& \vec{F} \cdot \vec{V}=4(\cos t-\sin t, \cos t) \cdot(\sin t, \cos t)=4(-\cos t \sin t+1) \\
& \text { (44) } \int_{0}^{2 \pi} \vec{F} \cdot \hat{v} d t=4 \int_{0}^{2 \pi} \int_{0}^{2 \pi} \cos t \sin t d t=4\left(t+\frac{\cos ^{2} t}{2}\right) \int_{0}^{2 \pi}=8 \pi
\end{aligned}
$$

Q: If \vec{F} were the force on a frictionless bead confined to a wire circle in Erample(3), which way would the bead circulates? Ans: If $\oint \vec{F} \cdot \vec{T} d s>0$, the "net force" on e bead is counter clockwise - if negative, the net force is clockwise -

Since we calculated

$$
\int_{e} \vec{F} \cdot \vec{T} d S=8 \pi>0
$$

the bead would rotate counterclockwise?

